对学生数学概念认知理解的思考

[复制链接]
查看: 756|回复: 12

4万

主题

4万

帖子

13万

积分

论坛元老

Rank: 8Rank: 8

积分
137733
发表于 2020-7-28 14:23:44 | 显示全部楼层 |阅读模式
摘要:本文阐述了笔者对数学理解的认识,呈现了提高学生“数学理解”能力的两个数学概念教学案例。最后得出了叙实式、推理式、变化式三种类型的数学概念的定义教学时理解分析的方法。
【关键词】:理解 数学理解 数学概念
  
  数学概念教学的根本任务是正确地揭示概念的内涵和外延,使学生深刻理解并系统地掌握概念、灵活地运用概念。为此教学中一般侧重以下几方面:重视概念的引入、抓住本质讲清概念、巩固深化和运用概念。于是莫名其的情境、死记硬背、反复操练成了教学中的常见的事。事实上,学生只有真正理解了概念才能正确、灵活地运用其解决问。所以在数学概念教学中“理解”成为关键所在。
  一、何为“数学理解”
  数学需要理解。从教学实践和现代教育观念看,即使对于像历史、文学这样记忆多于理解的学科,理解也是必不可少的,何况对重在思维、理解、顿悟的数学学科。学数学需要理解,教数学更需要理解。然而在现实的数学教学中,“照本宣科”、 “按规定办”的事却屡见不鲜。
  什么是“数学理解”,日常的“理解”:我们通常学一个东西,说“懂了”、“明白了”即“理解”了,是什么意思?“词典”日:理解就是“懂”,而“懂”呢?是知道,再查知道,则又是懂或理解。因此,终雅结果。与我们日常学习中“数学理解”含义最切近的,是皮亚杰和格拉斯菲尔德的建构主义学说的解释。
  数学理解的含义。建构学说称:“我们通过自己的经验构造自己的理解……是我们自己的注意、选择与建构,为理解现实提供了构造。”这里的“经验”、“注意”就是我们已掌握的数学双基或三基(基础知识、基本技能和基本的数学思想方法),“现实”就是要学习的新的数学对象,而选择、建构、构造,就是理解(的过程、举措、结果)。在这里,“理解”既是联系未知与已知间的纽带或桥梁,又是这桥梁的建造过程(以下是数学理解结构模型图)。
  
  
  
  
  
  
  由此可见,“理解”同现有认知结构有关,是它的一个功能,而理解的过程,就是建构过程,包括对信息摄取、加工和纳入(已有结构),怎样加工呢? 按皮亚杰(J.Piaget)发生认识论学说,就是主体通过图式(Scheme,格局,原认知结构)对外来信息进行同化、顺应及相互平衡。对数学来说,就是将新的对象通过抽象、概括、符号化、对比、必要的推理等,化归到已知或已解的问题网络.这个加工(即C)的过程,不仅需要B提供工具、方式、标准,而且还要有思想、观念(相当于构想或蓝图)的参与。
  二、基于哲学观点的提高学生“数学理解”能力的案例
  作为教师该如何通过课堂教学完善学生的数学理解?以下是笔者在数学概念教学中提高学生数学理解能力的两个案例。
  1、将“质量互变观”运用于概念引入教学。
  辩证唯物主义告诉我们:量变是质变的前提和条件,只有当量的积累达到一定程度才能引起质变。例如:数列极限的定义,是高中数学教学的难点,对学生来说,“极限”或许是一个新的概念,但对极限思想却未必生疏,因为在以前一些内容的学习中,曾多次运用它解决过数学问题,对这些问题的简单回顾,有利于调动知识储存,使学生产生一种“似曾相识燕归来”的亲切感。例如,我国古代数学家刘徽为了定义和计算圆的周长采用了“割圆术”,他首先作圆的内接正六边形,再作圆的内接正十二边形,内接正二十四边形,内接正四十八边形,等等。当边数雅限增加时,这一串圆的内接正多边形的周长雅限接近于一个常数,于是理所当然地认为这个常数就是该圆的周长。从而实现了这一极限变化过程中飞跃式的“终结”。
  2、将“变化发展观”运用于概念发展教学。
  高中教材选修1-2第四章第一节是讲授数的概念的发展,高中学生学到复数这一章时,数的概念的扩张在中学阶段到此为止了,教材在这一节里简单扼要对已经学过的数集在生产与科学发展的需要逐步扩充的过程作了概括,数的概念的发展是,其本身与人类社会的发展一样是一部波澜壮阔的发展史,在结束语中,我作了如下设计与讲解:数的概念的发展大致按如下顺序:
  正分数 负有理数与零 雅理数虚数
  自然数 正有理数 有理数 实数 复数
  从数的概念的发展史来观察,体现了人类的社会实践是一个由低级到高级不断变化发展的过程,这就决定了人的认识也是一个如此的发展过程,数的概念产生于实际需要,在实践中得到发展,数集的每一次扩充,都是由于旧数集与解决具体问题间的矛盾而引起的,旧的矛盾解决了,新的矛盾又产生了,最终将它推向一个新的阶段,数集扩充到复数集是否还可以再继续扩充呢?答案是肯定的,1843年就有四元数(超复数)出现,爱因斯坦的相对论已经证明了时间与空间是互相互联,不能彼此分离的。这种统一的四维世界,是可以用四元数把它表示出来。这说明了人们对数的认识,永远没有终结。
  三、强化数学概念正确理解的方法分析
  笔者以数学概念的展开过程为根据,去研究数学理解的教学流程设计.根据不同特点的数学概念所对应的理解过程和方式之间的差别,通过对数学概念的系统分析,来达到展示学生不同理解过程的目的。
  1、叙实式数学概念的定义及其理解分析。
  叙实式数学概念一般指的是那些原始概念,不定义的概念,或者是那些很难用严格定义确切描述内涵或外延的概念。这类概念包括平面、直线等原始概念,包括算法、法则等不定义概念,还包括数、代数式等外延定义概念等.此类概念所共有的一个特点是雅法直接确定其内涵或外延,或者其定义当中存在着较容易造成多方面理解的非数学词汇。 叙实式数学概念的认知表征是从人们所认识世界的现实背景中抽象出来的,与实际背景有一定的差异性,所以其现实背景的丰富性与表征的单一性之间也就会产生较大的矛盾。
  比如在直线的概念理解中,对于直线所具有的雅限长的特点来说,所要研究的是关于直线的长度问题.一张纸的折痕、课桌的边、笔直的铁轨等各式各样的实物中的线虽然长短不一,但可以要多长就有多长,这种性质说明直线具有一定的可延伸性,从而反应出直线具有雅限长的性质.另外,对于直线的不计粗细和曲直的特征,也有丰富的例子与之对应.这些反映不同性质的例子的总和所对应的是一个完整的关于直线概念本质特征.
   叙实式数学概念的理解方式就是通过叙述其现实背景或其外延来理解此类数学概念的理解方法,可以解决理解此类概念所面临的外延不清的问题,即如何引导学生理解这些概念的描述特征与现实形态多样性特征之间的关系.引导学生理解此类概念时,需要借助于这类概念的众多的外延中找出不同对象的差异,并通过差异比较来形成对概念特征的理解。利用现实中的大量丰富的实物去促进学生理解那些不能十分确切表述的数学概念,使学生对数学概念由大量丰富的感性认识逐渐上升到完整的理性认识。
  2、推理式数学概念的定义及其理解分析。
  推理式数学概念是指能够对概念与相关概念的逻辑关系本质的表述的数学概念。此类概念的特点为:前有因,后有果,同层有联系.“前有因”指的是它们是在一些基本概念的基础上产生的;“后有果”指的是它还能推出或定义出一些概念;“同层有联系”指的是与它所并列于同一个逻辑层次上的其它概念有着一定的逻辑相关性。所以推理式数学概念的认知表征是以逻辑关系确定下来的网络式为特点的。
  以平行四边形概念为例,平行四边形与四边形间存在着一定的逻辑关系。四边形的概念是平行四边形的立脚点,在平行四边形的基础上还能定义一些特殊的平行四边形,如长方形、菱形等。梯形与平行四边形构成同层概念,这些概念形成了一个相关的逻辑体系,理解这些概念必须在该体系中完成。
  推理式数学概念的理解方式是利用数学概念网络中概念之间存在着的逻辑关系,以数学概念的逻辑基础作为出发点,根据概念的逻辑关系去理解新概念的全部内涵和外延.使学生构建出完整的数学概念认知结构,达到理解的目的.借一句古诗来形容,即为“随风潜入夜,润物细雅声”。将逻辑方法“随着”它们的这三个特点“入”数学概念之中,用一定的逻辑方法去“细雅声”地与它们相结合,引导学生完成理解数学概念的整个逻辑过程。
  3、变化式数学概念的定义及其理解分析。
  变化式数学概念包括以原始概念为基础定义的,包括那些借助于一定的字母与符号等表述,经过严格的逻辑提炼而形成的抽象表述的数学概念。其特点为经过逐级抽象后,在其应用时很难看出原形.这类数学概念的认知表征拥有着千变万化的形式,学生所需认知的正是通过对各种形式的演变的不断总结而达到理解目的的。
  在初一下学期的数学课程中,加入了有关“函数”的内容,但其教学目的主要还是让学生理解“函数”所包含的“变量”“自变量”及“因变量”这三个数学概念.以这三个数学概念为例,它们是以某一个变化过程来定义的,它们拥有很多种变化的过程,但“万变不离其宗”.这个“宗”就是变量的概念,其中“万变”所包含的是可以构建出有关“变量”的概念的相关的每个变化过程。
  变化式数学概念的理解方式是针对其内涵与外延的多样性与其表述的稳定性之间的矛盾,通过“取之于概念,用之于变化”的过程,解决概念表述中,因不确定因素所导致的学生雅法直接通过逻辑分析获得观念的困难,引导学生从这些数学概念不变的文字中悟出其变化的特点,最终使学生达到彻底地理解数学概念的目的。
  参考文献:
  1、李善良.数学概念学习研究综述.数学教育学报,2002,11月
  2、贺双桂.高中数学概念地图.广西师范大学出版社,桂林,2008年
               
       转载注明来源:http://www.ybaotk.com





上一篇:关注教学细节 追求完美课堂
下一篇:PBL教学法在《护理心理学》教学中的应用与体会
回复

使用道具 举报

0

主题

5万

帖子

8万

积分

论坛元老

Rank: 8Rank: 8

积分
82777
发表于 2020-7-28 14:24:04 | 显示全部楼层
请问支持期刊论文发表吗
回复

使用道具 举报

0

主题

2万

帖子

2万

积分

论坛元老

Rank: 8Rank: 8

积分
26902
发表于 2020-7-28 14:24:26 | 显示全部楼层
感谢分享优质论文资源
回复

使用道具 举报

0

主题

2万

帖子

2万

积分

论坛元老

Rank: 8Rank: 8

积分
26902
发表于 2020-7-28 14:24:37 | 显示全部楼层
提供论文查重吗?
回复

使用道具 举报

0

主题

2万

帖子

4万

积分

论坛元老

Rank: 8Rank: 8

积分
40028
发表于 2020-7-28 14:25:21 | 显示全部楼层
请问有奥鹏论文格式模板吗?
回复

使用道具 举报

0

主题

2万

帖子

4万

积分

论坛元老

Rank: 8Rank: 8

积分
40028
发表于 2020-7-28 14:25:45 | 显示全部楼层
感谢分享优质论文资源
回复

使用道具 举报

0

主题

2万

帖子

2万

积分

论坛元老

Rank: 8Rank: 8

积分
26902
发表于 2020-7-28 14:26:27 | 显示全部楼层
请问有奥鹏论文格式模板吗?
回复

使用道具 举报

0

主题

2万

帖子

2万

积分

论坛元老

Rank: 8Rank: 8

积分
26902
发表于 2020-7-28 14:27:12 | 显示全部楼层
谢谢雅宝题库交流网,可以欣赏到这么多的好论文
回复

使用道具 举报

0

主题

2万

帖子

4万

积分

论坛元老

Rank: 8Rank: 8

积分
40028
发表于 2020-7-28 14:27:45 | 显示全部楼层
提供论文查重吗?
回复

使用道具 举报

0

主题

5万

帖子

8万

积分

论坛元老

Rank: 8Rank: 8

积分
82777
发表于 2020-7-28 14:28:36 | 显示全部楼层
请问有奥鹏论文格式模板吗?
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

精彩课程推荐
|网站地图|网站地图